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Abstract 
Circadian rhythms are physiological processes which 

regulate the sleep-wake cycle, metabolism and 

hormonal functions driven by clock genes. 

Suprachiasmatic nucleus (SCN), located in the anterior 

hypothalamus, regulates the mammalian circadian 

clock. Disruptions in circadian rhythms are associated 

with various metabolic disorders, neurodevelopmental 

conditions and cancers. Melatonin is crucial for 

synchronizing circadian rhythms, it maintains 

physiological homeostasis and particularly stabilizing 

the circadian clock under conditions of inflammation 

and stress. Circadian rhythms misalignments such as 

sleep disturbances and melatonin deficiencies lead to 

the pathogenesis of Autism Spectrum Disorder (ASD).  

 

Time restricting feeding (TRF) is an effective strategy 

for improving metabolic health and in reducing obesity 

related risks. Epigenetic regulation, including DNA 

methylation and histone modifications influence the 

circadian machinery, with dysregulation of these 

processes contributing to cancer and 

neurodevelopmental disorders. Therapeutic strategies 

targeting circadian rhythm alignment, such as 

melatonin supplementation and epigenetic 

modifications, offer promising avenues for reducing 

circadian related pathologies including metabolic 

syndrome, ASD and cancer.  
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Introduction 
Mammalian sleep-wake cycles also known as circadian 

rhythms are clock controlled. The internal biological clock 

can anticipate 24-hours day-night cycle. The hypothalamic 

suprachiasmatic nucleus (SCN) functions as a master 

circadian oscillator, which controls behavior71. Melatonin 

plays a critical role in synchronizing circadian rhythms. It is 

primarily produced by the pineal gland at night and is 

influenced by the length of the dark period. The hormone is 

involved in regulating body weight and energy balance, 

potentially impacting the development of obesity6. 

Melatonin helps in stabilizing circadian rhythm disruptions 

caused by inflammation by upregulating clock genes like 

BMAL1, PER1 and CLOCK26,65 and also helps to maintain 

the excitation balance in the brain which is critical for 

normal function and potentially disrupted in ASD, 

suggesting that melatonin deficiency could contribute to 

ASD pathogenesis96. It can mitigate circadian disruptions 

and can promote healthy aging.  

 

The research suggests melatonin supplementation as a 

potential therapeutic strategy for age-related circadian 

rhythm disturbances88. At the molecular level, the discovery 

of circadian rhythm genes began with the identification of 

the period (per) gene in drosophila. Subsequent research in 

mammals, particularly mice, revealed the clock gene (or 

Npas2 in neuronal tissue) through chemical mutagenesis. 

Mutations in the clock gene were associated with a 

prolonged rest-activity cycle. Further investigations 

unveiled additional clock genes involved in circadian 

regulation in mice, including brain and muscle ARNT-like 

protein 1 (BMALL), Per1, Per2 and Cryptochrime-1 (Cry1) 

and Cry2 genes16,28,53,70,78.  

 

The SCN express genes related to stem cell are typical for 

mature brain regions. These genes may play a role in neural 

plasticity. 25 genes highly expressed in the SCN, suggesting 

their potential involvement in maintaining circadian timing 

and adapting to environment changes7. 

 

Molecular and Cellular network of Suprachiasmatic 

Nucleus: The Suprachiasmatic nucleus is crucial for 

maintaining daily physiological rhythms. It prepares the 

body for activity by regulating heart rate, glucose levels and 

cortisol levels while melatonin decreases. The SCN targets 

mainly midline regions of the hypothalamus and specific 

neurons involved in autonomic and endocrine systems12. 

The SCN can be divided into two distinct sub regions: a 

ventrolateral core region and dorsomedial shell region, the 

core of the SCN transfers regulatory information to the shell 

through vasoactive intestinal peptide (VIP), while the shell 

projects sparsely back to the core. Peripheral clock gene 

expression is rhythmically regulated by glucocorticoids 

from the HPA axis58.   

 
The SCN anticipates events by adjusting its phase relative to 

the core and external cues. This is facilitated by the core – 

shell organization where the shell can lead the core in 



Research Journal of Biotechnology                                                                                                         Vol. 20 (8) August (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/208rjbt2890297      290 

activity peaks, enabling preparation for changes in 

downstream organs34. Three dimensional rendering of the 

six neurons revealed extensive soma, soma plate like contact 

sites within the SCN core, glial membrane intercalations 

were present in most soma, soma contact sites, although 

devoid of cytoplasm, suggest structural support22. Neuronal 

density was slightly higher in the shell compared to the core, 

non – myelinated axons, particularly mRGCs, formed a 

dense dendro – dendritic network and exhibited distinct 

morphological characteristics in boutons13.  

 

The researchers find SCN – enriched genes such as Avp, 

Nms, Prok2 and Vipr2 are considered important for 

signaling and rhythmicity in SCN10. Calbindin (CalB) cells 

interact with other peptidergic cell types such as vasoactive 

intestinal peptide (VIP), arginine vasopressin (AVP), 

cholecystokinin (CCK) and gastrin – releasing peptide 

(GRP). VIP fibers extensively innervate CalB cells, while 

AVP and CCK show limited interaction. GRP and CalB cells 

located in the same region demonstrate dense connectivity 

with some colocalization. Neuropeptide Y (NPY) and sparse 

serotonin fibers are also in contact with CalB cells57. VIP, 

AVP, GRP and CalB show distinct overlapping patterns 

within the SCN. VIP and AVP form extensive projections 

throughout the hypothalamus. Neuropeptide Y (NPY) and 

serotonin (5-HT) fibers surround and penetrate the SCN, 

with NPY concentrated in the central caudal region and 5-

HT fibers dispersed ventrally and throughout the 

hypothalamus21. 

 

Feeding Cycles as modulators of Circadian rhythms and 
metabolic health: Disruption in Circadian rhythms is linked 

to metabolic disorders such as obesity and diabetes29. 

BMAL1 is traditionally seen as a crucial component of the 

mammalian circadian clock; its deletion disrupts circadian 

behavior, sleep – wake cycles and other physiological 

processes. The observation of 24-hour molecular oscillations 

in skin fibroblasts and liver tissues of Bmal1 knockout mice 

by deletion of Bmal1 suggests that Bmal1 is not 

indispensable for circadian rhythms73. The liver and skeletal 

muscle maintain their own circadian rhythms, with Bmal1 

being the key gene driving these processes.  

 

Muscle specific reconstructions of Bmal1 partially restore 

glucose metabolism, but full systemic glucose tolerance 

requires the interplay between clocks in both liver and 

muscle, emphasizing the importance of cross – tissue 

circadian synchronization. Feeding – fasting rhythms 

enhance circadian gene expression in both liver and muscle, 

leading to improve glucose metabolism39,81. Bmal1’s pivotal 

function is maintaining the circadian clock by binding to 

core oscillator genes and regulatory elements like E- boxes 

and tandem E1-E2 elements. Bmal1 in metabolic regulations 

has implications for diseases like diabetes, obesity and 

cancer, where circadian dysfunction is often observed74.  
 

Clock gene expression exhibited robust rhythmicity in the 

SCN and HPA axis, with tissue – specific patterns. In the 

SCN, per1, per2 and bmal displays strong rhythmic 

expression, with per1 and per2 peaking during light period 

and bmal peaking during the dark period. HPA axis 

components showed rhythmic expression of clock genes, 

even though with tissue – specific phase relationships and 

responses to restricted feeding33. Circadian regulation of 

triglyceride (TAG) metabolism in the mouse liver has shown 

that TAG levels and the expression of key metabolic 

enzymes follow daily oscillations. Feeding – fasting cycles 

play a crucial role in modulating TAG oscillations2.  

 

Time – restricted feeding (TRF) prevented body weight gain, 

reduced fat accumulation and improved metabolic health 

compared to ad-libitum feeding, it also induced diurnal 

rhythms in fuel utilization, enhancing energy expenditure 

during feeding without changing total caloric intake14,15. 

TRF altered gene network linked to BMI, insulin and fatty 

acid levels, highlighting its potential to improve metabolic 

health and reduce obesity – related complications. 

 

These findings suggest TRF as an effective dietary strategy 

for enhancing circadian regulation and overall metabolic 

functions in individuals with obesity98. TRF enriched 

metabolic pathways related to amino acid metabolism in 

skeletal muscle and fatty acid metabolism in serum, 

demonstrating its ability to modulate peripheral metabolic 

regulators independently of the central clock64. Upon fasting 

for more than 24 hours, mammals switch from glucose to 

ketone bodies as a primary energy source. Intermittent and 

periodic fasting can enhance disease prevention and 

treatment62.  

 

A 10- hour time –restricted eating regimen in patients with 

metabolic syndrome led to weight loss, improved body 

composition and reductions in lipid levels and blood 

pressure, though it did not significantly affect thyroid 

function or blood cell counts and it enhances the purine cycle 

in diet – induced obesity models and AMPK signaling 

pathways in genetic induced obesity models. AMPK acts as 

a central censor of energy status, maintaining energy balance 

by regulating metabolic and catabolic pathways. AMPK 

activation improves glucose uptake and insulin sensitivity 

and enhances mitochondrial biogenesis61,69,86. 

 

Neurodevelopmental impact of Circadian Dysregulation 

in Autism Spectrum Disorder: Autism spectrum disorder 

(ASD) is prevalent neurodevelopmental condition diagnosed 

in early childhood, characterized by communication deficits, 

behavioral challenges and comorbidities like intellectual 

disability and epilepsy. ASD is linked to genetic, 

environmental and neural factors including abnormalities in 

the frontal cortex, hippocampus and cerebellum.  

 

Complicating treatment is due to its heterogeneous 

nature9,25. Disruption in circadian rhythms may play a 
significant role in the etiology and pathogenesis of Autism 

spectrum disorder (ASD). Fundamental processes related to 

synaptic functions such as ribosome maturation and mRNA 
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regulation, were identified as regulated by specific genes 

associated with ASD.  

 

Changes in these processes could potentially serve as 

causative factor for ASD occurs within the synaptic region. 

Mutations in specific circadian genes can impact circadian 

regulation and potentially contributes to ASD 

pathogenesis27,97. The researchers identify significant links 

between circadian rhythm disruption and ASD, emphasizing 

that sleep issues, hormonal imbalances and genetic 

mutations in circadian genes are prominent in ASD patients. 

It highlights sleep disturbances, abnormal melatonin levels 

and circadian gene mutations as key factors influencing ASD 

symptoms60. 

 

Ubiquitin – Conjugating Enzyme (UBE2O) promotes 

degradation of BMAL1, a core circadian transcription factor, 

affecting circadian rhythm regulation. Knockdown of 

UBE2O increases Bmal1 stability, enhancing circadian 

clock amplitude18. Dim light at night (DLaN) disrupted these 

rhythms by increasing the total amount of sleep and 

eliminating the usual day/night differences in sleep duration. 

DLaN exposure led to altered molecular circadian rhythms 

in various tissues including SCN, hippocampus and liver89. 

Children and adolescents with ASD show delayed melatonin 

onset and earlier age, related melatonin decline, contributing 

to pronounced sleep disruptions and less stable circadian 

rhythms67. Lower morning light exposure and differences in 

motor activity further exacerbate these circadian 

misalignments in ASD. 

 

Maternal immune activation (MIA) can disrupt fetal brain 

development, leading to long-term neuropsychiatric 

disorders like ASD in offspring. Neurodegenerative diseases 

like Alzheimer’s (AD) and Parkinson’s disease (PD) are 

increasingly recognized as having significant 

neuroinflammatory components. Neuroinflammation 

contributes to the progression of these diseases by altering 

the gene expression of neurons and glial cells, leading to 

neurodegeneration55,72. SCN neurons interconnected via 

dendro- dendritic chemical synapses (DDCSs), ipRGCs 

displays different branching patterns and synaptic features 

across the brain regions. ipRGCs preferentially form 

synapses with SCN neurons that are part of this DDCS 

network, potentially enhancing the synchronization of 

circadian rhythms51.  

 

ASD-related genes expressed in the human amygdala are 

also expressed in mouse amygdala, particularly in regions 

like the basolateral complex and the medial amygdala 

nucleus which have known roles in social behavior and 

emotional processing. 

 

The genes were also enriched in other cell types such as 

fibrous astrocytes, oligodendrocyte precursor cells and inter 
neurons41,90. miRNAs, which regulate gene expression, have 

emerged as key players in linking circadian rhythm and 

ASD. Many miRNAs, such as miR-219, miR-132 and miR-

146 are involved in regulating genes linked to both circadian 

rhythm and ASD, dysregulation of these miRNAs can 

influence ASD pathology through the control of circadian 

clock genes50.  Valproic acid (VPA) in utero showed 

significant circadian disruptions, including extended active 

phases and delayed activity offset. Abnormal expression of 

the core clock gene Bmal1 was observed in the SCN of 

VPA- exposed animals30. The 16p11.2 deletion and cntnap2 

null mouse models both displayed hyperactivity and some 

motor deficits, but only cntnap2 null mice showed altered 

responses to social stimuli, enhanced cognitive flexibility 

and improved sensorimotor gating. Neither model exhibited 

significant social deficits nor increased behavioral 

variability compared to controls, highlighting distinct but 

overlapping behavioral phenotypes11. The CNTNAP2 gene, 

encoding the Contactin –associated protein-like 2 (Caspr2), 

has been linked to conditions such as autism, intellectual 

disability and epilepsy. 

 

Mutations in this gene exhibit Pitt-Hopkins –like syndrome 

(PTHLS), characterized by severe developmental and 

neurological impairments. Successful treatment with 

stiripentol illustrates a significant advancement in the 

application of genetic analysis and precision medicine for 

treating complex epileptic syndrome31,76. The central 

nervous system (CNS) triggers specific epigenetic changes 

that influence both neurons and glial cells. Epigenetic 

mechanisms including DNA methylation, histone 

modifications and non-coding- RNA involvement regulate 

gene expression in response to injury. These mechanisms 

either promote or inhibit axon regeneration depending on the 

specific context and cell type79.  The research identifies that 

the aggravation of brain injury due to circadian disruption is 

associated with increased oxidative stress, inflammation and 

apoptosis in the brain.  

 

Specifically, the study points out the upregulation of pro- 

apoptotic proteins and down regulation of anti- apoptotic 

ones indicating a shift towards cell death pathways that 

contributes to worsened outcomes56. Axon regeneration is 

critical process following nerve injury, particularly in the 

peripheral nervous system. Bmal1 was found to inhibit axon 

regeneration by interacting with the epigenetic factor Tet3, 

which is crucial for DNA demethylation and regenerative 

gene expression. Bmal1 acts as a gatekeeper of 

neuroepigenetics responses to axon injury by limiting Tet3 

expression and restricting 5-hydroxymethylcytosine (5hmC) 

modifications. Tet3 is a crucial epigenetic regulator of axon 

regeneration24.  

 

The primary treatments for ASD with 

psychopharmacological options are like typical 

antipsychotics, stimulants and melatonin that address sleep 

issues and N-acetyl cysteine. Emerging targeted treatments 

for ASD include Oxytocin, Bumetanide, Metformin, 
Lovastatin, Cannabidiol, Arbaclofen, Trofinetide, 

Phosphordiasterase 4D inhibitors, Anavex 2-73 and gene 

therapy3. 
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Epigenetic Link between Circadian Clock Disruptions 

and Cancer: Epigenetics as heritable changes in phenotype 

do not involve alterations in the DNA sequence. 

Traditionally, this concept has been associated with 

chromatin modifications such as DNA methylation and 

histone modifications32,40. By the early 1980s, it was 

discovered that DNA methylation within the 5′ promoter 

regions inhibits transcription, highlighting its role in gene 

silencing. Later research in the 1990s and 2000s linked DNA 

methylation to histone modifications and 3D genome 

organization, furthering our understanding of its regulatory 

function45,68. DNA methylation is the process of adding a 

methyl group to specific DNA bases, mainly cytosines (Cs), 

in eukaryotes, in mammals and insects. Most DNA 

methylation occurs at CG sites4,5. 

 

Changes in DNA methylation including both hypo and 

hypermethylations, play crucial role in carcinogenesis by 

altering cellular processes like the cell cycle, DNA repair 

and cell proliferation. These methylation changes can silence 

tumor suppressor genes and activate oncogenes, making 

them key epigenetic drivers of cancer. Current methods for 

analyzing DNA methylation patterns such as whole- genome 

bisulfite sequencing (WGBS) and other targeted approaches, 

are essential for understanding these modifications94, 54. 

Epigenetic clocks, based on changes in DNA methylation at 

specific CpG sites, can accurately predict chronological age. 

These clocks have been linked to biological aging, showing 

correlations with diseases like Alzheimer’s, cancer and 

cardiovascular conditions 87. 

 

Disruption of circadian rhythms has been linked to an 

increased risk of cancer, whether due to genetic mutations or 

lifestyle factors such as irregular sleep patterns. The 

circadian clock regulates the expression of genes involved in 

cell cycle control, apoptosis and DNA repair, suggesting that 

clock dysfunction can contribute to tumorigenesis17,19,44,66,80 

and is strongly linked to various cancers including breast, 

colorectal, prostate and lung cancer, as well as leukemia. 

Factors like light exposure at night and shift work can 

increase cancer risk by altering clock gene expression and 

melatonin suppression. The circadian clock regulates the 

expression nearly 50% protein-coding genes in mammals. In 

breast cancer, hypermethylation of these genes plays a role 

while in colorectal cancer, Bmal1 expression influences 

chemotherapy sensitivity.  

 

Circadian gene disruption is also observed in leukemia and 

short sleep is associated with a higher risk of fatal prostate 

and lung cancers77,92. A significant fraction of genes in any 

given tissue shows circadian oscillations at the mRNA level. 

However, this regulation extends beyond steady-state 

mRNA rhythms to multiple stages of gene expression 

including transcription, splicing, termination, 

polyadenylation, nuclear export, microRNA regulation, 
translation and RNA degradation1,83. Histone methylation, 

regulated by histone methyltransferases (HMTs) and 

demethylases (HDMs), plays a crucial role in circadian 

rhythms by modulating chromatin states and gene 

expression. Various histone marks such as H3K4me3, 

H3K9me2/3 and H3K27me3, are implicated in circadian 

regulation, interacting with core clock components like 

Bmal1-CLOCK. The dynamic and complex interplay 

between histone methylation and demethylation suggests a 

sophisticated regulatory mechanism that is essential for 

maintaining circadian rhythms35,37,48.  

 

A genome wide mRNA screen identified the miR-

183/96/182 cluster as a key regulator of circadian rhythms, 

miR-96 within the cluster directly targets and represses the 

core circadian gene PER2, affecting its expression at both 

mRNA and protein levels99. DNA methyltransferases 

(DNMT1 and DNMT3A) revealed that these enzymes play 

non-redundant roles in circadian gene regulation, further 

supporting the importance of epigenetic regulation in 

circadian rhythm control36,59. lncRNAs (Long non-coding 

RNAs) are emerging as key regulators of circadian rhythms. 

They modulate gene expression, interact with chromatin-

modifying proteins and affect the stability of the mRNAs.  

 

Specific lncRNAs exhibit rhythmic expression in tissues like 

pineal gland, linking them directly to circadian control8. 

Analysis of chicken hypothalamus samples across a 24-hour 

cycle identified two gene sets related to circadian rhythms 

and retinal metabolism, highlighting several lncRNAs, 

circRNAs and 200 genes within a regulatory network.  

 

Key molecules including three lncRNAs (MSTRG.16890.1, 

ENSGALT00000098661 and ENSGALT00000100816) and 

one circRNA (novel_circ_010168) were found to regulate 

the gene AOX1 (Aldehyde oxidase 1), linking it to circadian 

regulation and retinal metabolism82,84. The repeated intake 

of cocaine and sucrose influences DNA methylation, 

circadian rhythms and gene expression in rat brain structure.  

 

The changes in DNA methylation are linked to chromatin 

remodeling, indicating a complex interaction between 

epigenetic regulation and behavioral outcomes related to 

addiction63,75. Misalignment of the circadian clock might be 

a risk factor for breast cancer development, disrupted 

circadian rhythms or changes in gene expression related to 

the circadian clock in breast cancer cells52.  

 

Bmal1 plays a crucial role in the development and 

functionality of reproductive organs by regulating reactive 

oxygen species (ROS) and influencing gonadotropin 

secretion, making it a potential therapeutic target for 

reproductive endocrine disorders. Bmal1 knockout (KO) 

mice show disrupted gonadotropin secretion, with female 

mice lacking the luteinizing hormone (LH) surge and males 

exhibiting altered Follicle stimulating hormone (FSH) 

levels, while Bmal1 also regulates Gonadotropin releasing 

hormone (GnRh) receptor expression, enhancing pituitary 
sensitivity to kisspeptin and GnRH. Additionally, Bmal1 

influences the rhythmic secretion of GnRH, impacting 
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downstream hormones like LH and FSH, which are essential 

for reproductive function.  

 

Mutations in Bmal1 lead to impaired fertility in both male 

and females due to altered hormone levels and disrupted 

reproductive cycles46,47. Bmal1 influences histone 

acetylation, which in turn affects the expression of genes 

involved in wound healing and tissue repair23. Bmal1 also 

acts as tumor suppressor gene that is epigenetically silenced 

in ovarian cancer through promoter hypermethylation and 

repressive histone modifications. The restoration of Bmal1 

expression leads to tumor-suppressive effects including 

reduced cell proliferation, enhanced chemosensitivity and 

restoration of normal circadian rhythms in cancer cells43,85,95. 

Melatonin was shown to improve nuclear and cytoplasmic 

maturation in mouse oocytes during in vitro maturation 

(IVM).  

 

Melatonin, known for its antioxidant properties, protects 

oocytes from oxidative damage by reducing ROS. This 

protection enhances oocyte developmental competence 

during IVM, indicating melatonin’s potential in improving 

fertility preservation techniques49. EpiTOC (Epigenetic 

Timer of Cancer) is a novel tool that uses DNA methylation 

patterns to create a mitotic clock for predicting cancer risk 

by linking increased methylation at specific loci to 

heightened stem cell mitotic activity. EpiTOC provides 

insights into cancer susceptibility, integrating biological 

knowledge and bioinformatics for tissue specific analysis. It 

identifies age- related hypermethylation at polycomb target 

loci as potential biomarkers for assessing cancer 

risk20,38,42,93. 

 

Conclusion 
In this review we focus on the important role of circadian 

rhythms in regulating a wide range of physiological 

processes including metabolism, neurodevelopmental 

conditions and cancer progression and specifically focused 

on genes involved in circadian rhythms such as BMAL1, 

CLOCK, PER and other important genes. Circadian rhythms 

disruptions are associated with metabolic disorders such as 

obesity and diabetes and also autism spectrum disorder 

(ASD) and various cancers. The epigenetic regulation of 

circadian rhythms reveals how DNA methylation and 

histone modifications play a crucial role in regulating 

neurological disorders and cancers.  

 

More research is needed to evaluate potential therapeutic 

targeting circadian rhythms, such as melatonin 

supplementation, time restricting feeding (TRF) and 

epigenetic modifications. These approaches show the way in 

improving metabolic health, stabilizing circadian rhythms 

disruptions and providing potential strategies to reduce the 

pathogenesis of ASD and cancers. In conclusion, 

synchronizing circadian rhythms through therapeutic 

approaches will find the way to cure a variety of health 

conditions, from metabolic disorders to neurodevelopmental 

and oncological diseases. 
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